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Bilevel optimization

We consider the general bilevel problem

min
(x,y)∈X×Y

f (x , y)

s.t. y ∈ argmin
ȳ∈Y

g(x , ȳ)
(BP)

where

f : IRn → IR, g : IRm → IR are possibly nonsmooth but locally Lipschitz
continuous

X ⊆ IRn and Y ⊆ IRm are closed convex sets
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Traditional approaches

Replace the lower-level (LL) problem by its optimality conditions.

Example: Suppose Y = IRm and g ∈ C 1. Then (BP) may be tackled using

min
(x,y)∈X×Y

f (x , y)

s.t. ∇yg(x , y) = 0
.

The above a smooth nonlinear programming problem if f ∈ C 1 and g ∈ C 2.

This is an equivalent formulation if g(x , ·) is convex ∀x ∈ X , ...but only a
relaxation otherwise.

Other approaches: Reformulation via the value function
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Shortcomings of existing works

Smoothness and (strong) convexity are strong assumptions!

LL objective may be nonsmooth and/or nonconvex in y (or merely convex).

Example: Let g(x , y) = 1
2∥Ay − b∥2 + x∥y∥pp with p ∈ (0, 1]

nonsmooth for any p ∈ (0, 1]

nonconvex when p ∈ (0, 1)

merely convex when p = 1

Research on nonsmooth nonconvex BP objective is scarce.

How to design solution methods with theoretical guarantees?

How to define stationarity for general bilevel problems?
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Value function approach

We consider the value function defined as

v(x) = min
y∈Y

g(x , y).

With this, (BP) is equivalent to

min
(x,y)∈X×Y

f (x , y)

s.t. g(x , y)− v(x) ≤ 0,
(VFP)

Advantage: No structural assumptions on g !

Disadvantages:

1 Absence of suitable constraint qualifications
(When are local solutions of (VFP) stationary?)

2 Lack of solution methods for (VFP) ← Focus of this work!
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1. Constraint qualifications

Recall: If a local solution satisfies some constraint qualifications (CQ), then it is
a stationary point.

Usual CQs, such as the Mangasarian-Fromovitz CQ, are violated by feasible
points of (VFP).

Alternative: Consider the approximate bilevel program

min
(x,y)∈X×Y

f (x , y)

s.t. g(x , y)− v(x) ≤ ϵ.
(VFPϵ)

where ϵ > 0.

MFCQ is automatically satisfied by feasible points of (VFPϵ).

Local/global solutions of (VFPϵ) are arbitrarily close to solution set of (VFP)
(Lin et al., 2014, Ye et al., 2023).
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2. Solution methods

v is nonsmooth in general, even if g is smooth.

Example: Let g(x , y) = xy and Y = [−1, 1]. Then

v(x) = min
y∈Y

g(x , y) = −|x |.

Hence, unfortunately, even if f and g are smooth, (VFPϵ) may be a
nonsmooth nonlinear programming problem (NLP).
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Proposed approach

Target problem: The value function reformulation of (BP) with nonsmooth
but Lipschitz continuous f and g :

min
(x,y)∈X×Y

f (x , y)

s.t. g(x , y)− v(x) ≤ ϵ,
(VFPϵ)

where v(x) := miny∈Y g(x , y).

Strategy:

Replace f and g with their smooth approximations.

Derive smooth approximations of the value function v .
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Formal definition of smoothing functions

Let O ⊆ IRd be an open set and let ϕ : O → IR be a Lipschitz continuous
function.

Definition (X. Chen, R. Womersley, and J. Ye, 2011)

We say that {ϕµ : µ > 0} is a family of smooth approximations for ϕ : O → IR
if ϕµ : O → IR is continuously differentiable and if

lim
z→z̄,µ→0

ϕµ(z) = ϕ(z̄) ∀z ∈ O.
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A smooth approximation model of the bilevel problem

We consider

min
(x,y)∈X×Y

fµ(x , y)

s.t. gµ(x , y)− vµ(x) ≤ ϵ.
(VFPµ

ϵ )

where fµ, gµ and vµ are smooth approximations of f , g and v , resp.

Smooth approximations fµ and gµ may be readily available.

Problems

1 How do we obtain approximations of v?

2 How are the stationary points of (VFPµ
ϵ ) related to stationary points of

(VFPϵ) as µ→ 0?

Goal: Derive smooth approximations1 of the value function so that
accumulation points of a sequence of stationary points {xµ : µ > 0} are
stationary points of (VFPϵ).
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Stationary points

Definition

Let ϕ be a Lipschitz continuous function on an open set O ⊆ IRn.
1 The Clarke generalized directional derivative of ϕ at x̄ ∈ O in the direction

d , denoted by ϕ◦(x ; d), is defined as

ϕ◦(x̄ ; d) = lim sup
x→x̄,t↘0

ϕ(x + td)− ϕ(x)

t
,

2 The Clarke generalized gradient of ϕ at x̄ , denoted by ∂ϕ(x̄), is given by

∂ϕ(x̄) := {ξ ∈ IRn : ϕ◦(x̄ ; d) ≥ ⟨ξ, d⟩ ∀d ∈ IRn},

3 x̄ ∈ X is a stationary point of

min
x∈X

ϕ(x)

if 0 ∈ ∂ϕ(x̄) + NX (x̄).
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Stationary point of the value function reformulation

Recall our target problem:

min
(x,y)∈X×Y

f (x , y)

s.t. g(x , y)− v(x) ≤ ϵ.
(VFPϵ)

Definition (Lin et al., 2014)

Let (x̄ , ȳ) be a feasible point of (VFPϵ) with ϵ ≥ 0. We say that (x̄ , ȳ) is a
stationary point of (VFPϵ) if there exists λ ≥ 0 such that{

0 ∈ ∂f (x̄ , ȳ) + λ∂g(x̄ , ȳ)− λ∂v(x̄)× {0}+ NX×Y (x̄ , ȳ)

λ(g(x̄ , ȳ)− v(x̄)− ϵ) = 0
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Goal

For the smoothly approximated problem,

min
(x,y)∈X×Y

fµ(x , y)

s.t. gµ(x , y)− vµ(x) ≤ ϵ.
(VFPµ

ϵ )

1 How do we derive smooth approximations of v?

2 How do we ensure that if

{xµ : µ > 0} is a sequence of stationary points of (VFPµ
ϵ ),

then accumulation points are stationary to the original problem (VFPϵ)?
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An important requirement for smoothing approaches

Consider the problem
min
x∈X

ϕ(x)

with nonsmooth ϕ.

Smoothly approximate the problem as

min
x∈X

ϕµ(x).

Let {µk} be a sequence such that µk → 0. Assume that

For each k, we can get a stationary point xk , that is, 0 ∈ ∇ϕµk (x
k) + NX (x

k)
as k →∞.

For simplicity, xk → x̄ .

Desired property: 0 ∈ ∂ϕ(x̄) + NX (x̄).
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Gradient consistency

Definition (X. Chen, R. Womersley, and J. Ye, 2011)

The family of smooth approximations {ϕµ : µ > 0} for ϕ satisfies the gradient
consistent property at z̄ ∈ O if

∅ ≠ lim sup
z→z̄,µ↘0

∇ϕµ(z) ⊆ ∂ϕ(z̄),

where

lim sup
z→z̄,µ↘0

∇ϕµ(z)

:=
{
ξ ∈ IRd : ∃{zk},∃{µk} s.t. zk → z̄ , µk ↘ 0 and ∇ϕµk

(zk) → ξ
}

| July 26, 2024 15
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Significance of gradient consistency for bilevel problems

Proposition (A. and Takeda, 2024)

Let {µk} be a sequence of positive numbers with µk ↘ 0. Suppose that
{fµ : µ > 0}, {gµ : µ > 0} and {vµ : µ > 0} satisfy the gradient consistent
property;

(xk , yk) is a stationary point of (VFPµ
ϵ ) with µ = µk ;

Let λk denote the corresponding Lagrange multiplier.

If {(xk , yk , λk)} is bounded, then its accumulation points are stationary points
of (VFPϵ).
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Summary

We consider the model

min
(x,y)∈X×Y

fµ(x , y)

s.t. gµ(x , y)− vµ(x) ≤ ϵ.
(VFPµ

ϵ )

Assumption: Smoothing functions fµ and gµ that possess gradient
consistent property are available.

Goals

Derive a smooth approximation vµ of v = min
y∈Y

g(·, y).

Characterize the elements of ∂v .

Establish gradient consistency:

∅ ≠ lim sup
x→x̄,µ↘0

∇vµ(x) ⊆ ∂v(x̄),
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Smoothing approach 1: Quadratic regularization

Consider {g̃µ : µ > 0} where

g̃µ(x , y) := gµ(x , y) +
µ

2
∥y∥2,

and define

vµ(x) := min
y∈Y

g̃µ(x , y) and Sµ(x) := argmin
y∈Y

g̃µ(x , y).

Questions: When is vµ smooth? When do we have

lim
x→x̄,µ↘0

vµ(x) = v(x̄) ?

Under what conditions can we achieve

lim
x→x̄,µ↘0

vµ(x)
def
=

lim
x→x̄,µ↘0

(
min
y∈Y

g̃µ(x , y)

)
?
= min

y∈Y

(
lim

x→x̄,µ↘0
g̃µ(x , y)

)
︸ ︷︷ ︸

=g(x̄,y)

?
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An important tool

Definition

A function h : IRm × IRd → IR ∪ {+∞} with values h(y , z) is level-bounded in
y locally uniform in z if for any z ′ ∈ IRn and M ∈ IR, there exists an open ball
B around z ′ such that ⋃

z∈B

{y ∈ IRm : h(y , z) ≤ M}

is bounded. We also say that h is uniformly level bounded.

Note:

If h is continuous,

continuity of v at z̄ means that

min
y∈IRn

(
lim
z→z̄

h(y , z)
)
=

min
y∈IRm

h(y , z̄)
def
= lim

z→z̄
v(z)

def
= lim

z→z̄

(
min
y∈IRm

h(y , z)

)
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An important tool

Theorem (Rockafellar and Wets 1998)

Let h : IRm × IRd → IR ∪ {+∞} be a proper lower-semicontinuous function that is
level-bounded in y ∈ IRm locally uniform in z ∈ IRd . Define

v(z) := min
y∈IRm

h(y , z) and S(z) := argmin
y∈IRm

h(y , z)

and let z̄ ∈ IRd .

(a) If there exists ȳ ∈ S(z̄) such that h(ȳ , ·) is continuous on a set U containing z̄ ,
then v is continuous on U; and

(b) If v is continuous on a set U containing z̄ , {zk} ⊆ U such that zk → z̄ and {y k}
is a sequence such that y k ∈ S(zk) for all k, then {y k} is bounded and its
accumulation points lie on S(z̄).

Note:

If h is continuous,

continuity of v at z̄ means that

min
y∈IRn

(
lim
z→z̄

h(y , z)
)
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If h is continuous,

continuity of v at z̄ means that

min
y∈IRn

(
lim
z→z̄

h(y , z)
)
=

min
y∈IRm

h(y , z̄)
def
= lim

z→z̄
v(z)

def
= lim

z→z̄

(
min
y∈IRm

h(y , z)

)
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Smoothing approach 1: Quadratic regularization

Assumption A

Let OX be an open set containing X and Ω ⊆ OX .
1 gµ(x , ·) is convex ∀x ∈ OX and gµ is uniformly bounded on cl(Ω)× Y .

2 gµ(x , y) is continuous as a function of (x , y , µ) ∈ IRn × IRm × IR++.

3 gµ → g uniformly on cl(Ω)× Y as µ → 0 for any Ω ⊆ OX .

4 g is level-bounded in y locally uniform in x .

Theorem 1 (A. and Takeda, 2024)

Under Assumption A1-A4, {vµ : µ > 0} is a family of smooth approximations
for v and ∇vµ(x) = ∇xgµ(x ,Sµ(x)).
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Some comments

If g(x , ·) is convex, then its Moreau envelope, i.e.,

Mg(x,·)(y) = min
z∈Y

g(x , z) +
1

2µ
∥z − y∥2

is a convex differentiable function that converges uniformly to g(x , y).

We can set gµ(x , y) = Mg(x,·)(y) and Assumptions A1, A3 are satisfied.

In hyperparameter learning, we consider the LL objective

g(x , y) = ℓ(y) +
n∑

i=1

xipi (y),

with constraint sets Y = IRm and X = [ε1,∞)× · · · × [εn,∞), where εi > 0
for all i .

If one of the pi ’s is coercive, then Assumption A4 is satisfied.
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Smoothing approach 2: Entropic regularization −
Compact case

Recall the approximation

max{y1, y2, . . . , yr} ≈ µ ln
r∑

i=1

exp(µ−1yi ).

We propose the following approximation1 of v :

vµ(x) := −µ ln

(∫
Y

exp
(
−µ−1gµ(x , y)

)
dy

)

Theorem 2 (A. and Takeda, 2024)

Under Assumption A3, {vµ : µ > 0} is a family of smooth approximations for v
provided that Y is compact.

1Inspired by Lin et al. (2014), Fang and Wu (1996), and Li and Fang (1997).
| July 26, 2024 22



Smoothing methods for the value function | Smooth approximations of the value function

Smoothing approach 2: Entropic regularization −
Compact case

Recall the approximation

max{y1, y2, . . . , yr} ≈ µ ln
r∑

i=1

exp(µ−1yi ).

We propose the following approximation1 of v :

vµ(x) := −µ ln

(∫
Y

exp
(
−µ−1gµ(x , y)

)
dy

)

Theorem 2 (A. and Takeda, 2024)

Under Assumption A3, {vµ : µ > 0} is a family of smooth approximations for v
provided that Y is compact.

1Inspired by Lin et al. (2014), Fang and Wu (1996), and Li and Fang (1997).
| July 26, 2024 22



Smoothing methods for the value function | Smooth approximations of the value function

Smoothing approach 2: Entropic regularization −
Compact case

Recall the approximation

max{y1, y2, . . . , yr} ≈ µ ln
r∑

i=1

exp(µ−1yi ).

We propose the following approximation1 of v :

vµ(x) := −µ ln

(∫
Y

exp
(
−µ−1gµ(x , y)

)
dy

)

Theorem 2 (A. and Takeda, 2024)

Under Assumption A3, {vµ : µ > 0} is a family of smooth approximations for v
provided that Y is compact.

1Inspired by Lin et al. (2014), Fang and Wu (1996), and Li and Fang (1997).
| July 26, 2024 22



Smoothing methods for the value function | Smooth approximations of the value function

Smoothing approach 2: Entropic regularization −
Compact case

Assumption A

Let OX be an open set containing X and Ω ⊆ OX .
1 gµ(x , ·) is convex ∀x ∈ OX and gµ is uniformly bounded on cl(Ω)× Y .

2 gµ(x , y) is continuous as a function of (x , y , µ) ∈ IRn × IRm × IR++.

3 gµ → g uniformly on cl(Ω)× Y as µ → 0 for any Ω ⊆ OX .

4 g is level-bounded in y locally uniform in x .

Recall the approximation

max{y1, y2, . . . , yr} ≈ µ ln
r∑

i=1

exp(µ−1yi ).

We propose the following approximation1 of v :

vµ(x) := −µ ln

(∫
Y

exp
(
−µ−1gµ(x , y)

)
dy

)

Theorem 2 (A. and Takeda, 2024)

Under Assumption A3, {vµ : µ > 0} is a family of smooth approximations for v
provided that Y is compact.

1Inspired by Lin et al. (2014), Fang and Wu (1996), and Li and Fang (1997).

| July 26, 2024 22



Smoothing methods for the value function | Smooth approximations of the value function

Smoothing approach 2: Entropic regularization −
Compact case

Recall the approximation

max{y1, y2, . . . , yr} ≈ µ ln
r∑

i=1

exp(µ−1yi ).

We propose the following approximation1 of v :

vµ(x) := −µ ln

(∫
Y

exp
(
−µ−1gµ(x , y)

)
dy

)

Theorem 2 (A. and Takeda, 2024)

Under Assumption A3, {vµ : µ > 0} is a family of smooth approximations for v
provided that Y is compact.

1Inspired by Lin et al. (2014), Fang and Wu (1996), and Li and Fang (1997).
| July 26, 2024 22



Smoothing methods for the value function | Smooth approximations of the value function

Proof ingredients:

1 Leibniz rule

2 Mean-value theorem for Lipschitz continuous functions

3 Integral estimates:

For any τ ∈ (0, 1), there exists δ > 0 such that for any µ ∈ (0, δ) and
x ∈ cl(Ω),

τ(µ vol(Y ))µ max
y∈Y

exp(−g(x , y)) ≤
(∫

Y

exp
(
−µ−1g(x , y)

)
dy

)µ

≤ vol(Y )µ max
y∈Y

exp(−g(x , y))
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Smoothing approach 2: Entropic regularization −
Unbounded case

When Y is an unbounded closed set, we consider

vµ(x) := −µ ln

(∫
Yµ

exp
(
−µ−1gµ(x , y)

)
dy

)
, (1)

where Yµ is a compact set such that Yµ ↗ Y as µ ↘ 0.

Theorem 3 (A. and Takeda, 2024)

Under Assumption A3-A4 and assuming that µ ln vol(Yµ) → 0 as µ ↘ 0,
{vµ : µ > 0} is a family of smooth approximations for v .
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Goals

Derive a smooth approximation vµ of v .

Characterize the elements of ∂v .

Establish gradient consistency:

∅ ≠ lim sup
x→x̄,µ↘0

∇vµ(x) ⊆ ∂v(x̄),
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Smooth case, compact constraint set

Danskin’s Theorem (Danskin, 1967)

Let g : IRn × Y → IR be given, where Y is a compact subset of IRm. Suppose
that for a neighborhood Ω of x̄ ∈ IRn, the derivative ∇xg(x , y) exists and is
continuous (jointly) as a function of (x , y) ∈ Ω× Y . Then

∂v(x̄) = co{∇xg(x̄ , ȳ) : ȳ ∈ S(x̄)},

where S : IRn ⇒ Y is given by

S(x) := argmin
y∈Y

g(x , y).
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Nonsmooth case, compact constraint set

Danskin-type theorem for nonsmooth functions (Bertsekas, 1971)

Let g : IRn × Y → IR be given, where Y is a compact subset of IRm. Suppose
that

for a neighborhood Ω of x̄ ∈ IRn, g is continuous on Ω× Y ; and
for every y ∈ Y , the function g(·, y) is a concave function on IRn

Then v is concave on IRn and

∂v(x̄) = P(x̄) := co{ξ ∈ IRn : ξ ∈ ∂xg(x̄ , ȳ) and ȳ ∈ S(x̄)}.
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Generalizations

Let x̄ ∈ OX and Ω a neighborhood of x̄ .

Theorem 4 (A. and Takeda, 2024)

Suppose that Assumption A4 holds, i.e., g is level-bounded in y locally uniform
in x . Moreover, suppose that any one of the following conditions hold:

1 ∇xg(x , y) exists and is continuous on Ω× Y ;

2 g(·, y) is ρ-weakly concave on Ω for every y ∈ OY ;

3 g is convex in (x , y) and ∂g(x̄ , ȳ) = ∂xg(x̄ , ȳ)× ∂yg(x̄ , ȳ) for every
ȳ ∈ S(x̄).

Then

∂v(x̄) = co{ξ ∈ IRn : ξ ∈ ∂xg(x̄ , ȳ) and ȳ ∈ S(x̄)}.
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Gradient consistency for smoothing by quadratic
regularization

Theorem 5 (A. and Takeda, 2024)

In addition to Assumption A, suppose that {gµ : µ > 0} satisfies the gradient
consistent property. Then v satisfies the gradient consistent property at x̄ if one
of the following conditions holds:

1 ∇xg(x , y) exists and is continuous on Ω× Y ;

2 g(·, y) is ρ-weakly concave on Ω for every y ∈ OY ;

3 g is convex in (x , y) and ∂g(x̄ , ȳ) = ∂xg(x̄ , ȳ)× ∂yg(x̄ , ȳ) for every
ȳ ∈ S(x̄).

Proof. Using uniform level-boundedness and gradient consistency, show that

πx(∂g (x̄ , ȳ)) ⊆ ∂xg(x̄ , ȳ) ∀ȳ ∈ S(x̄)

=⇒ ∅ ̸= lim sup
x→x̄,µ→0

∇vµ(x) ⊆
⋃

ȳ∈S(x̄)

∂xg(x̄ , ȳ).

Use Danskin’s theorem.
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Gradient consistency for smoothing by entropic
regularization - Compact case

Theorem 6 (A. and Takeda, 2024)

In addition to Assumption A3, suppose that
(a) there exists a neighborhood Ω of x̄ ∈ OX such that ∂xg(·, ·) is upper

semicontinuous on Ω× OY ; and

(b) dist(∇xgµ(x , ·), ∂xg(x , ·)) converges to 0 uniformly on Y as (x , µ) → (x̄ , 0)
Then v satisfies the gradient consistent property at x̄ if one of the following
conditions holds:

1 ∇xg(x , y) exists and is continuous on Ω× Y ;

2 g(·, y) is ρ-weakly concave on Ω for every y ∈ OY ;

3 g is convex in (x , y) and ∂g(x̄ , ȳ) = ∂xg(x̄ , ȳ)× ∂yg(x̄ , ȳ) for every
ȳ ∈ S(x̄).

3A similar result holds when Y is unbounded, but additional technical assumptions are
needed.
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Proof ingredients:

1 Uniform convergence + Bounded convergence theorem

2 Heine-Borel Theorem

3 Jensen’s inequality

4 Rademacher’s Theorem
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Summary

Nonsmooth nonconvex bilevel optimization is an area of optimization with
lots of open problems!

This work proposed two theoretical frameworks for deriving smooth
approximations of the value function that possess gradient consistent
property.

Future works

Deriving other smooth approximations

Extensions to non-Lipschitz continuous functions

Specializing the results to min-max problems*

Numerical implementations of the smoothing approaches:*

min
(x,y)∈X×Y

fµ(x , y)

s.t. gµ(x , y)− vµ(x) ≤ ϵ.
(VFPµ

ϵ )
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Thank you for listening!

Main reference: Alcantara, Jan Harold and Takeda, Akiko, “Theoretical smoothing
frameworks for general nonsmooth bilevel problems”, arXiv:2401.17852 (2024).
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Nonsmooth MFCQ

Consider the problem
min f (x)
s.t. g(x) ≤ 0

x ∈ X .
(2)

Definition (Lin, Xu & Ye, 2014 )

Let x̄ be a feasible point of (2). We say that the nonsmooth MFCQ holds at x̄
if either g(x̄) < 0 or g(x̄) = 0 but there exists d ∈ intTX (x̄) such that

v⊤d < 0 ∀v ∈ ∂g(x̄).

If intTX (x̄) ̸= ∅, the latter condition is equivalent to having

0 /∈ ∂g(x̄) + NX (x̄).
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General smoothing techniques

Suppose that h is a nonsmooth Lipschitz continuous function.

1 Mollifiers
Given a mollifier ϕ, i.e., a compactly supported function with∫
IRn ϕ(z)dz = 1, we define

hµ(x) =

∫
IRn

h(x − z)ϕµ(z)dz

where ϕµ(z) =
1
µnϕ

(
z
µ

)
.

hµ is a smooth approximation of g :

lim
x→x̄,µ↘0

hµ(x) = h(x̄)

satisfies gradient consistency:

∅ ̸= lim sup
z→z̄,µ↘0

∇hµ(z) ⊆ ∂h(z̄). (3)
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Advantage: No restrictive assumptions.

Disadvantage: For the value function, smoothing via mollifiers is too complex:

vµ(x) =

∫
IRn

v(x − z)ϕµ(z)dz

=

∫
IRn

min
y∈Y

g(x − z , y)ϕµ(z)dz .

| July 26, 2024 39



Smoothing methods for the value function

2 Infimal convolution
Suppose that h is convex and ϕ is an L-smooth convex function. Define

ϕµ(·) := µϕ
(

·
µ

)
, and

hµ(x) := min
z∈IRn

h(z) + ϕµ(x − z) = (h□ϕµ)(x)

hµ is L/µ-smooth with

∇hµ(x) = ∇ϕ
(
x − pµ(x)

µ

)
where

pµ(x) := argmin
z∈IRn

h(z) + ϕµ(x − z) = (h□ϕµ)(x)

Gradient consistency holds.
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Disadvantage: Has additional requirement on h.

i For the value function v to be convex, one sufficient condition is for g(x , y) to
be jointly convex on (x , y);

ii −v is convex if g(·, y) is concave for each y ∈ Y .

Advantage: May be easier to compute for the value function

i vµ(x) = min
z∈IRn

v(z) + µϕ

(
x − z

µ

)
= min

z∈IRn
min
y∈Y

g(x , y) + µϕ

(
x − z

µ

)
ii vµ(x) := −(−v□ϕµ)(x) = max

z∈IRn
min
y∈Y

g(z , y)− µϕ

(
x − z

µ

)
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Summary

Smoothing via mollifiers is generally applicable but may be computationally
intractable

Involves minimization and integration

Smoothing via infimal convolution is applicable for special convex/concave
cases

Involves double optimization

Both satisfy gradient consistency.
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