Method of Alternating Projections for Solving Absolute Value Equations

Jan Harold Alcantara
Academia Sinica, Taipei, Taiwan

International Conference on Continuous Optimization 2022 Lehigh University, Pennsylvania, USA July 25, 2022

Joint work with Jein-Shan Chen and Matthew K. Tam

Outline

1 Absolute value equation and its reformulation

2 Fixed point characterization

3 Convergence results

4 Numerical experiments

Absolute value equation (AVE)

$$
A x=c
$$

Absolute value equation (AVE)

The system of equations

$$
\begin{equation*}
A x+B|x|=c \tag{AVE}
\end{equation*}
$$

where $A, B \in \mathbb{R}^{m \times n}$ and $c \in \mathbb{R}^{m}$ is called an absolute value equation.

Absolute value equation (AVE)

The system of equations

$$
\begin{equation*}
A x+B|x|=c \tag{AVE}
\end{equation*}
$$

where $A, B \in \mathbb{R}^{m \times n}$ and $c \in \mathbb{R}^{m}$ is called an absolute value equation.

■ This reduces to a system of linear equations when $B=0$.

Absolute value equation (AVE)

The system of equations

$$
\begin{equation*}
A x+B|x|=c \tag{AVE}
\end{equation*}
$$

where $A, B \in \mathbb{R}^{m \times n}$ and $c \in \mathbb{R}^{m}$ is called an absolute value equation.

- This reduces to a system of linear equations when $B=0$.

■ When $m=n,(\mathrm{AVE}) \Longleftrightarrow(\mathrm{LCP})^{2}$

$$
\begin{equation*}
x \geq 0, \quad M x+q \geq 0, \quad \text { and } \quad\langle x, M x+q\rangle=0 \tag{LCP}
\end{equation*}
$$

known as the linear complementarity problem.
${ }^{2}$ O. L. Mangasarian, R.R. Meyer, Absolute value equations, Linear Algebra and its Applications, 419, 359-367, 2006.

Known methods for solving AVEs

Case I. $m=n$ and $B=-I$
There are plenty of algorithms for

$$
A x-|x|=c
$$

but they can be roughly classified as:
■ Newton-based methods. Semismooth Newton, Inexact Newton, and smoothing Newton approaches.

■ Picard iterations. When A is invertible, solutions of (AVE) corresponds to fixed points of $T(x):=A^{-1}(|x|+c)$.

■ Matrix splitting method. Splitting strategies for A to reduce cost of each iteration instead of solving a full linear system.

■ Successive linearization algorithm. Reformulate (AVE) as a concave minimization problem, solved by successive linearization.

Case II (General case). $m \neq n, B \neq 1$
■ Only successive linearization algorithm is known to handle the general case.

■ Note: The interest to this case might be purely theoretical only, as there are no known applications (yet).

Our approach to solve $A x+B|x|=c$

Our approach to solve $A x+B|x|=c$

■ Let $y=|x| \in \mathbb{R}^{n}$.

Our approach to solve $A x+B|x|=c$

■ Let $y=|x| \in \mathbb{R}^{n}$.

- AVE reduces to finding a pair (x, y) such that

$$
\left\{\begin{array}{l}
A x+B y=c \\
y=|x|
\end{array}\right.
$$

Our approach to solve $A x+B|x|=c$

■ Let $y=|x| \in \mathbb{R}^{n}$.

- AVE reduces to finding a pair (x, y) such that

$$
\left\{\begin{array}{l}
A x+B y=c \\
y=|x|
\end{array}\right.
$$

$$
\begin{array}{lll}
S_{1}:=\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}: A x+B y=c\right\} & \text { (affine) } \\
S_{2}:=\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}: y=|x|\right\} & \text { (nonconvex) }
\end{array}
$$

Our approach to solve $A x+B|x|=c$

■ Let $y=|x| \in \mathbb{R}^{n}$.

- AVE reduces to finding a pair (x, y) such that

$$
\left\{\begin{array}{l}
A x+B y=c \\
y=|x|
\end{array}\right.
$$

■ We obtain a nonconvex feasibility problem:

$$
\text { Find } \quad(x, y) \in S_{1} \cap S_{2}
$$

where $S_{1}, S_{2} \subset \mathbb{R}^{n}$ are given by

$$
\begin{array}{lll}
S_{1}:=\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}: A x+B y=c\right\} & \text { (affine) } \\
S_{2}:=\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}: y=|x|\right\} & \text { (nonconvex) }
\end{array}
$$

Our approach to solve $A x+B|x|=c$

- Let $y=|x| \in \mathbb{R}^{n}$.
- AVE reduces to finding a pair (x, y) such that

$$
\left\{\begin{array}{l}
A x+B y=c \\
y=|x|
\end{array}\right.
$$

- We How do we solve a two-set feasibility problem?

Find $(x, y) \in J_{1} \cap J_{2}$
where $S_{1}, S_{2} \subset \mathbb{R}^{n}$ are given by

$$
\begin{array}{lll}
S_{1}:=\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}: A x+B y=c\right\} & \text { (affine) } \\
S_{2}:=\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}: y=|x|\right\} & \text { (nonconvex) }
\end{array}
$$

Solution methods for feasibility problems

■ Classical approaches use projections: Given a nonempty set S, the projector onto S is given by

$$
P_{S}(z):=\{s \in S:\|s-z\| \leq\|t-z\| \quad \forall t \in S\} .
$$

Solution methods for feasibility problems

■ Classical approaches use projections: Given a nonempty set S, the projector onto S is given by

$$
P_{S}(z):=\{s \in S:\|s-z\| \leq\|t-z\| \quad \forall t \in S\} .
$$

- When S is convex and closed, P_{S} is single-valued everywhere.

■ When S is nonconvex, P_{S} could be multivalued.

Projectors onto convex and nonconvex set

$$
S_{2}:=\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}: y=|x|\right\}
$$

Examples of solution methods for feasibility problems

Examples of solution methods for feasibility problems

1 Method of alternating projections (MAP)

$$
z^{k+1} \in P_{S_{1}}\left(P_{S_{2}}\left(z^{k}\right)\right), \quad k=0,1,2, \ldots
$$

2 Method of averaged projections (MAveP)

$$
z^{k+1} \in \frac{P_{S_{1}}\left(z^{k}\right)+P_{S_{2}}\left(z^{k}\right)}{2}, \quad k=1,2, \ldots
$$

3 Douglas-Rachford method (DR)

$$
z^{k+1} \in \frac{z^{k}+R_{S_{1}}\left(R_{S_{2}}\left(z^{k}\right)\right)}{2}, \quad k=0,1,2, \ldots
$$

where $R_{S}:=2 P_{S}-I d$.

MAP, MAveP, DR

■ Global convergence to $S_{1} \cap S_{2}$ is known when the sets S_{1} and S_{2} are both closed and convex.

- Nonconvex case is problematic.

Our approach

We apply MAP to

$$
\text { Find } \quad(x, y) \in S_{1} \cap S_{2}
$$

with

$$
\begin{array}{lll}
S_{1}:=\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}: A x+B y=c\right\} & \text { (affine) } \\
S_{2}:=\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}: y=|x|\right\} & \text { (nonconvex) }
\end{array}
$$

Our approach

We apply MAP to

$$
\text { Find } \quad(x, y) \in S_{1} \cap S_{2}
$$

with

$$
\begin{array}{lll}
S_{1}:=\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}: A x+B y=c\right\} & \text { (affine) } \\
S_{2}:=\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}: y=|x|\right\} & \text { (nonconvex) }
\end{array}
$$

Problems

1 If a generated MAP sequence is convergent, is the limit a solution?

Our approach

We apply MAP to

$$
\text { Find } \quad(x, y) \in S_{1} \cap S_{2}
$$

with

$$
\begin{array}{lll}
S_{1}:=\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}: A x+B y=c\right\} & \text { (affine) } \\
S_{2}:=\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}: y=|x|\right\} & \text { (nonconvex) }
\end{array}
$$

Problems

1 If a generated MAP sequence is convergent, is the limit a solution?

2 Is MAP globally/locally convergent?

Our approach

We apply MAP to

$$
\text { Find } \quad(x, y) \in S_{1} \cap S_{2}
$$

with

$$
\begin{array}{lll}
S_{1}:=\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}: A x+B y=c\right\} & \text { (affine) } \\
S_{2}:=\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}: y=|x|\right\} & \text { (nonconvex) }
\end{array}
$$

Problems

1 If a generated MAP sequence is convergent, is the limit a solution?

2 Is MAP globally/locally convergent?
3 Do we obtain good numerical results?

Our approach

We apply MAP to

$$
\text { Find } \quad(x, y) \in S_{1} \cap S_{2}
$$

with

$$
\begin{array}{lll}
S_{1}:=\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}: A x+B y=c\right\} & \text { (affine) } \\
S_{2}:=\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}: y=|x|\right\} & \text { (nonconvex) }
\end{array}
$$

Problems

1 If a generated MAP sequence is convergent, is the limit a solution? (Focus of this work)

2 Is MAP globally/locally convergent?
3 Do we obtain good numerical results?

Outline

1 Absolute value equation and its reformulation

2 Fixed point characterization

3 Convergence results

4 Numerical experiments

Is the limit (if it exists) always a solution?

$$
\begin{aligned}
& S_{1}=\left\{(x, y) \in \mathbb{R}^{2}: x-y=-2 / \sqrt{2}\right\} \\
& S_{2}=\left\{(x, y) \in \mathbb{R}^{2}: y=|x|\right\} .
\end{aligned}
$$

Is the limit (if it exists) always a solution?

$S_{1}=\left\{(x, y) \in \mathbb{R}^{2}: x-y=-2 / \sqrt{2}\right\}$
$S_{2}=\left\{(x, y) \in \mathbb{R}^{2}: y=|x|\right\}$.

- Let C_{1} and C_{2} be 45° clockwise rotations of S_{1} and S_{2}, respectively.

Is the limit (if it exists) always a solution?

$S_{1}=\left\{(x, y) \in \mathbb{R}^{2}: x-y=-2 / \sqrt{2}\right\}$
$S_{2}=\left\{(x, y) \in \mathbb{R}^{2}: y=|x|\right\}$.

- Let C_{1} and C_{2} be 45° clockwise rotations of S_{1} and S_{2}, respectively.

Figure: $C_{1}:=$ blue line
$C_{2}:=$ nonnegative (u, v)-axes

Figure: $C_{1}:=$ blue line; $C_{2}:=$ nonnegative (u, v)-axes

Location of initial point	Limit of $\left(P_{C_{1}} \circ P_{C_{2}}\right)^{k}$
Gray region	Not a solution
Red dashed line	Depends on selected element of $P_{C_{2}}$
Else	Solution

Fixed points

Definition

The set of fixed points of MAP are given by
$\operatorname{Fix}\left(P_{S_{1}} \circ P_{S_{2}}\right)=\left\{z \in \mathbb{R}^{n} \times \mathbb{R}^{n}: z \in\left(P_{S_{1}} \circ P_{S_{2}}\right)(z)\right\}$,

Fixed points

Definition
The set of fixed points of MAP are given by
$\operatorname{Fix}\left(P_{S_{1}} \circ P_{S_{2}}\right)=\left\{z \in \mathbb{R}^{n} \times \mathbb{R}^{n}: z \in\left(P_{S_{1}} \circ P_{S_{2}}\right)(z)\right\}$,

■ Limit points of a MAP sequence belong to $\operatorname{Fix}\left(P_{S_{1}} \circ P_{S_{2}}\right)$.

Fixed points

Definition
The set of fixed points of MAP are given by
$\operatorname{Fix}\left(P_{S_{1}} \circ P_{S_{2}}\right)=\left\{z \in \mathbb{R}^{n} \times \mathbb{R}^{n}: z \in\left(P_{S_{1}} \circ P_{S_{2}}\right)(z)\right\}$,

■ Limit points of a MAP sequence belong to $\operatorname{Fix}\left(P_{S_{1}} \circ P_{S_{2}}\right)$.
■ Clearly, $S_{1} \cap S_{2} \subset \operatorname{Fix}\left(P_{S_{1}} \circ P_{S_{2}}\right)$.

Fixed points

Definition
The set of fixed points of MAP are given by

$$
\begin{equation*}
\operatorname{Fix}\left(P_{S_{1}} \circ P_{S_{2}}\right)=\left\{z \in \mathbb{R}^{n} \times \mathbb{R}^{n}: z \in\left(P_{S_{1}} \circ P_{S_{2}}\right)(z)\right\}, \tag{1}
\end{equation*}
$$

■ Limit points of a MAP sequence belong to $\operatorname{Fix}\left(P_{S_{1}} \circ P_{S_{2}}\right)$.
■ Clearly, $S_{1} \cap S_{2} \subset \operatorname{Fix}\left(P_{S_{1}} \circ P_{S_{2}}\right)$.

- If S_{1} and S_{2} are convex and closed, $S_{1} \cap S_{2}=\operatorname{Fix}\left(P_{S_{1}} \circ P_{S_{2}}\right)$.

Fixed points

Definition

The set of fixed points of MAP are given by

$$
\begin{equation*}
\operatorname{Fix}\left(P_{S_{1}} \circ P_{S_{2}}\right)=\left\{z \in \mathbb{R}^{n} \times \mathbb{R}^{n}: z \in\left(P_{S_{1}} \circ P_{S_{2}}\right)(z)\right\}, \tag{1}
\end{equation*}
$$

■ Limit points of a MAP sequence belong to $\operatorname{Fix}\left(P_{S_{1}} \circ P_{S_{2}}\right)$.
■ Clearly, $S_{1} \cap S_{2} \subset \operatorname{Fix}\left(P_{S_{1}} \circ P_{S_{2}}\right)$.

- If S_{1} and S_{2} are convex and closed, $S_{1} \cap S_{2}=\operatorname{Fix}\left(P_{S_{1}} \circ P_{S_{2}}\right)$.

■ For the feasibility reformulation of the AVE:
Which fixed points belong to $S_{1} \cap S_{2}$?

Change of Variables

- Let R be the orthogonal matrix $R=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}I_{n} & -I_{n} \\ I_{n} & I_{n}\end{array}\right]$ and let $w=R^{\top} z$, where

$$
\begin{array}{rll}
z & =(x, y) & \\
\text { (original variables) } \\
w & =(u, v) & \\
\text { (new variables) }
\end{array}
$$

Change of Variables

- Let R be the orthogonal matrix $R=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}I_{n} & -I_{n} \\ I_{n} & I_{n}\end{array}\right]$ and let $w=R^{\top} z$, where

$$
\begin{array}{rll}
z & =(x, y) & \\
\text { (original variables) } \\
w & =(u, v) & \\
\text { (new variables) }
\end{array}
$$

- The constraint sets S_{1} and S_{2} become

$$
\begin{aligned}
& C_{1}=\left\{w \in \mathbb{R}^{n} \times \mathbb{R}^{n}: T w=\sqrt{2} c\right\} \quad T:=[A+B-A+B] \\
& C_{2}=\left\{w=(u, v) \in \mathbb{R}^{n} \times \mathbb{R}^{n}: u \geq 0, v \geq 0, \text { and }\langle u, v\rangle=0\right\}
\end{aligned}
$$ (complementarity set)

Change of Variables

- Let R be the orthogonal matrix $R=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}I_{n} & -I_{n} \\ I_{n} & I_{n}\end{array}\right]$ and let $w=R^{\top} z$, where

$$
\begin{array}{rll}
z & =(x, y) & \\
\text { (original variables) } \\
w & =(u, v) & \\
\text { (new variables) }
\end{array}
$$

- The constraint sets S_{1} and S_{2} become

$$
\begin{aligned}
& C_{1}=\left\{w \in \mathbb{R}^{n} \times \mathbb{R}^{n}: T w=\sqrt{2} c\right\} \quad T:=[A+B-A+B] \\
& C_{2}=\left\{w=(u, v) \in \mathbb{R}^{n} \times \mathbb{R}^{n}: u \geq 0, v \geq 0, \text { and }\langle u, v\rangle=0\right\}
\end{aligned}
$$ (complementarity set)

- Find $z \in S_{1} \cap S_{2} \Longleftrightarrow$ Find $w \in C_{1} \cap C_{2}$

Change of Variables

- Let R be the orthogonal matrix $R=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}I_{n} & -I_{n} \\ I_{n} & I_{n}\end{array}\right]$ and let $w=R^{\top} z$, where

$$
\begin{array}{rll}
z & =(x, y) & \\
\text { (original variables) } \\
w & =(u, v) & \\
\text { (new variables) }
\end{array}
$$

- The constraint sets S_{1} and S_{2} become

$$
\begin{aligned}
& C_{1}=\left\{w \in \mathbb{R}^{n} \times \mathbb{R}^{n}: T w=\sqrt{2} c\right\} \quad T:=[A+B-A+B] \\
& C_{2}=\left\{w=(u, v) \in \mathbb{R}^{n} \times \mathbb{R}^{n}: u \geq 0, v \geq 0, \text { and }\langle u, v\rangle=0\right\}
\end{aligned}
$$ (complementarity set)

- Find $z \in S_{1} \cap S_{2} \Longleftrightarrow$ Find $w \in C_{1} \cap C_{2}$
- $R^{\top} \operatorname{Fix}\left(P_{S_{1}} \circ P_{S_{2}}\right)=\operatorname{Fix}\left(P_{C_{1}} \circ P_{C_{2}}\right)$

Case I: Arbitrary m and n

Denote

$$
\begin{aligned}
\hat{C}_{2} & =\left\{(u, v) \in \mathbb{R}^{n} \times \mathbb{R}^{n}: u_{i} v_{i}=0 \forall i \in[n]\right\}, \\
\Omega & =\left\{(u, v) \in \mathbb{R}^{n} \times \mathbb{R}^{n}: \text { for each } i \in[n], u_{i} \geq 0 \text { or } v_{i} \geq 0\right\} .
\end{aligned}
$$

Theorem (A, Chen \& Tam, 2022, JFPTA)
Let $T=[A+B-A+B] \in \mathbb{R}^{m \times 2 n}$. If

$$
\begin{equation*}
\operatorname{Ker}(T)^{\perp} \cap \hat{C}_{2}=\{0\} \tag{C}
\end{equation*}
$$

then for any $c \in \mathbb{R}^{m}$,

$$
\operatorname{Fix}\left(P_{C_{1}} \circ P_{C_{2}}\right) \cap \Omega=C_{1} \cap C_{2} .
$$

Questions

1 When does condition (C):

$$
\begin{equation*}
\operatorname{Ker}(T)^{\perp} \cap \hat{C}_{2}=\{0\} \tag{C}
\end{equation*}
$$

hold?
2 Under what assumptions do we get

$$
\operatorname{Fix}\left(P_{C_{1}} \circ P_{C_{2}}\right) \subset \Omega ?
$$

Case II: $m=n$

A matrix Q is said to be nondegenerate if all its principal minors are nonzero ${ }^{3}$.
${ }^{3}$ That is, $\operatorname{det}\left(Q_{\Lambda \Lambda}\right) \neq 0$ for all $\wedge \subset\{1, \ldots, n\}$

Case II: $m=n$

A matrix Q is said to be nondegenerate if all its principal minors are nonzero ${ }^{3}$.

Theorem (A, Chen \& Tam, 2022, JFPTA)
If $Q:=\left(A^{\top}+B^{\top}\right)\left(A^{\top}-B^{\top}\right)^{-1}$ is nondegenerate ${ }^{4}$, then

$$
\operatorname{Fix}\left(P_{C_{1}} \circ P_{C_{2}}\right) \cap \Omega=C_{1} \cap C_{2} .
$$

${ }^{3}$ That is, $\operatorname{det}\left(Q_{\Lambda \Lambda}\right) \neq 0$ for all $\wedge \subset\{1, \ldots, n\}$

Case II: $m=n$

A matrix Q is said to be nondegenerate if all its principal minors are nonzero ${ }^{3}$.

Theorem (A, Chen \& Tam, 2022, JFPTA)
If $Q:=\left(A^{\top}+B^{\top}\right)\left(A^{\top}-B^{\top}\right)^{-1}$ is nondegenerate ${ }^{4}$, then

$$
\operatorname{Fix}\left(P_{C_{1}} \circ P_{C_{2}}\right) \cap \Omega=C_{1} \cap C_{2} .
$$

[^0]
Case II: $m=n$

A matrix Q is said to be nondegenerate if all its principal minors are nonzero ${ }^{3}$.

Theorem (A, Chen \& Tam, 2022, JFPTA)
If $Q:=\left(A^{\top}+B^{\top}\right)\left(A^{\top}-B^{\top}\right)^{-1}$ is nondegenerate ${ }^{4}$, then
$\operatorname{Fix}\left(P_{C_{1}} \circ P_{C_{2}}\right) \cap \Omega=C_{1} \cap C_{2}$.

Nondegeneracy of Q holds, for instance, when $\sigma_{\min }(A)>\sigma_{\max }(B)$ or $\sigma_{\max }(A)<\sigma_{\min }(B)$.

```
\({ }^{3}\) That is, \(\operatorname{det}\left(Q_{\wedge \wedge}\right) \neq 0\) for all \(\Lambda \subset\{1, \ldots, n\}\)
\({ }^{4} \operatorname{Ker}(T)^{\perp}=\operatorname{Ker}\left(\left[\begin{array}{ll}I & Q\end{array}\right]\right)\)
```


Example 1: Importance of nondegeneracy

- Let $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right), B=-I$ and $c=(-10,-19) / \sqrt{2}$.

■ Then

$$
Q=\left(\begin{array}{rr}
-1.5 & 1.5 \\
1 & 0
\end{array}\right)
$$

is degenerate.
■ Let $\bar{w}=(-0.9231,4.7026,9.0872 ; 0.6154)$. Then

$$
\bar{w} \in \operatorname{Fix}\left(P_{C_{1}} \circ P_{C_{2}}\right) \cap \Omega \quad \text { and } \quad \bar{w} \notin C_{1} \cap C_{2} .
$$

Case II: $m=n$ (continued)

A matrix Q is said to be a P-matrix if all of its principal minors are positive ${ }^{5}$.

[^1]
Case II: $m=n$ (continued)

A matrix Q is said to be a P-matrix if all of its principal minors are positive ${ }^{5}$.

Theorem (A, Chen \& Tam, 2022, JFPTA)
If $Q:=\left(A^{\top}+B^{\top}\right)\left(A^{\top}-B^{\top}\right)^{-1}$ is a P-matrix, then

$$
\begin{equation*}
\operatorname{Fix}\left(P_{C_{1}} \circ P_{C_{2}}\right)=C_{1} \cap C_{2} . \tag{2}
\end{equation*}
$$

${ }^{5}$ That is, $\operatorname{det}\left(Q_{\Lambda \Lambda}\right)>0$ for all $\wedge \subset\{1, \ldots, n\}$

Case II: $m=n$ (continued)

A matrix Q is said to be a P-matrix if all of its principal minors are positive ${ }^{5}$.

Theorem (A, Chen \& Tam, 2022, JFPTA)
If $Q:=\left(A^{\top}+B^{\top}\right)\left(A^{\top}-B^{\top}\right)^{-1}$ is a P-matrix, then

$$
\begin{equation*}
\operatorname{Fix}\left(P_{C_{1}} \circ P_{C_{2}}\right)=C_{1} \cap C_{2} . \tag{2}
\end{equation*}
$$

If $\sigma_{\min }(A)>\sigma_{\max }(B)$, then Q is positive definite. Thus, (2) holds.
${ }^{5}$ That is, $\operatorname{det}\left(Q_{\Lambda \Lambda}\right)>0$ for all $\wedge \subset\{1, \ldots, n\}$

Outline

1 Absolute value equation and its reformulation

2 Fixed point characterization

3 Convergence results

4 Numerical experiments

Local convergence

Theorem (A, Chen \& Tam, 2022, JFPTA)
Suppose $w^{*} \in C_{1} \cap C_{2}$. Then there exists sufficiently small $\delta>0$ such that for any w^{0} with $\left\|w^{0}-w^{*}\right\|<\delta$, any generated MAP sequence converges to a point in $C_{1} \cap C_{2}$.

Local convergence

Theorem (A, Chen \& Tam, 2022, JFPTA)
Suppose $w^{*} \in C_{1} \cap C_{2}$. Then there exists sufficiently small $\delta>0$ such that for any w^{0} with $\left\|w^{0}-w^{*}\right\|<\delta$, any generated MAP sequence converges to a point in $C_{1} \cap C_{2}$.

Proved in two ways:

Local convergence

Theorem (A, Chen \& Tam, 2022, JFPTA)
Suppose $w^{*} \in C_{1} \cap C_{2}$. Then there exists sufficiently small $\delta>0$ such that for any w^{0} with $\left\|w^{0}-w^{*}\right\|<\delta$, any generated MAP sequence converges to a point in $C_{1} \cap C_{2}$.

Proved in two ways:
■ Proof 1: By expressing C_{2} as a finite union of closed convex sets, results will follow from Dao \& Tam (JOTA, 2019).

Local convergence

Theorem (A, Chen \& Tam, 2022, JFPTA)
Suppose $w^{*} \in C_{1} \cap C_{2}$. Then there exists sufficiently small $\delta>0$ such that for any w^{0} with $\left\|w^{0}-w^{*}\right\|<\delta$, any generated MAP sequence converges to a point in $C_{1} \cap C_{2}$.

Proved in two ways:
■ Proof 1: By expressing C_{2} as a finite union of closed convex sets, results will follow from Dao \& Tam (JOTA, 2019).

■ Proof 2: Using an optimization reformulation of the feasibility problem.

Local convergence

Theorem (A, Chen \& Tam, 2022, JFPTA)
Suppose $w^{*} \in C_{1} \cap C_{2}$. Then there exists sufficiently small $\delta>0$ such that for any w^{0} with $\left\|w^{0}-w^{*}\right\|<\delta$, any generated MAP sequence converges to a point in $C_{1} \cap C_{2}$.

Proved in two ways:
■ Proof 1: By expressing C_{2} as a finite union of closed convex sets, results will follow from Dao \& Tam (JOTA, 2019).

■ Proof 2: Using an optimization reformulation of the feasibility problem.

■ By-product of Proof 2: Global convergence for homogeneous AVE.

Linear rates: Arbitrary m and n

Proposition (A, Chen \& Tam, 2022, JFPTA)
If condition (C) holds:

$$
\begin{equation*}
\operatorname{Ker}(T)^{\perp} \cap \hat{C}_{2}=\{0\} \tag{C}
\end{equation*}
$$

and $w^{*} \in C_{1} \cap C_{2}$ such that $\left(u_{i}^{*}, v_{i}^{*}\right) \neq(0,0)(\forall i)$, then any sequence generated by MAP with initial point sufficiently close to w^{*} converges linearly to a point in $C_{1} \cap C_{2}$.

This is a consequence of Lewis, Luke and Malick's linear convergence results for super-regular sets with linearly regular intersection.

Linear rates: $m=n$

Theorem (A, Chen \& Tam, 2022, JFPTA)
If Q is nondegenerate and $w^{*} \in C_{1} \cap C_{2}$ such that $\left(u_{i}^{*}, v_{i}^{*}\right) \neq(0,0)(\forall i)$, then any sequence generated by MAP with initial point sufficiently close to w^{*} converges linearly to w^{*}.

Global convergence

- We have global convergence for

1 homogeneous AVE
2 Relaxed version of MAP:

$$
w^{k+1} \in(1-\gamma) P_{C_{2}}\left(w^{k}\right)+\gamma\left(P_{C_{1}} \circ P_{C_{2}}\right)\left(w^{k}\right), \quad \gamma \in(0,1)
$$

Global convergence

- We have global convergence for

1 homogeneous AVE
2 Relaxed version of MAP:

$$
w^{k+1} \in(1-\gamma) P_{C_{2}}\left(w^{k}\right)+\gamma\left(P_{C_{1}} \circ P_{C_{2}}\right)\left(w^{k}\right), \quad \gamma \in(0,1)
$$

■ No global convergence result for full MAP ${ }^{6}$.
${ }^{6}$ Not until our most recent work:
J.H. Alcantara and C.-p. Lee, Global convergence and acceleration of fixed point iterations of union upper semicontinuous operators: proximal algorithms, alternating and averaged nonconvex projections, and linear complementarity problems, arXiv:2202.10052, 2022.

Global convergence

- We have global convergence for

1 homogeneous AVE
2 Relaxed version of MAP:

$$
w^{k+1} \in(1-\gamma) P_{C_{2}}\left(w^{k}\right)+\gamma\left(P_{C_{1}} \circ P_{C_{2}}\right)\left(w^{k}\right), \quad \gamma \in(0,1)
$$

- No global convergence result for full MAP ${ }^{6}$.

■ Conjecture: Nondegeneracy is necessary for global convergence.

Outline

1 Absolute value equation and its reformulation

2 Fixed point characterization

3 Convergence results

4 Numerical experiments

Example 1: $m=n$

■ Set $A=A^{\prime} /\left(t \sigma_{\min }\left(A^{\prime}\right)\right)$ with $a_{i j}^{\prime} \sim U(-10,10)$ and $t \sim U(0,1)$.
$■$ Set $x^{*} \in \mathbb{R}^{n}$ such that $x_{i}^{*}=r \cdot 10^{\alpha s}$ with $\alpha \in\{0,1,2,3\}$, $r \sim U(-1,1)$ and $s \sim U(0,1)$.

- $c=A x^{*}+B\left|x^{*}\right|$ with $B=-1$.
- $n=5000$

Table: Results for Example 1

Method		α			
		0	1	2	3
MAP	Success rate	$\mathbf{1}$	$\mathbf{0 . 9 9}$	$\mathbf{0 . 8 7}$	$\mathbf{0 . 6 2}$
	Ave. Time	2.58	3.03	3.13	10.42
	Ave. Iter	40.85	52.51	55.44	250.39
GNM	Success rate	0.76	0.55	0	0
	Ave. Time	2.23	2.29	-	-
	Ave. Iter	3.93	4.00	-	-
PIM	Success rate	0.75	0.54	0.01	0
	Ave. Time	0.57	0.59	0.84	-
	Ave. Iter	4.99	5.65	22.00	-

GNM: Generalized Newton Method (Mangasarian, 2008) PIM: Picard Iteration Method (Rohn, Hooshyarbaksh, and Farhadsefat, 2014)

Example 2: $m \neq n$

- Sample entries of $A, B \in \mathbb{R}^{m \times n}$ and $x^{*} \in \mathbb{R}^{n}$ from the standard normal distribution.

■ Set $c=A x^{*}+B\left|x^{*}\right|$

- $n=500$

■ $m=r n$ with $r \in\{0.25,0.5,0.75,1.5,2.0,3.0\}$.

Table: Results for Example 2

Method		r						
		0.25	0.5	0.75	1.5	2	3	
MAP	Ave. Time	0.01	0.03	0.26	0.12	0.02	0.19	
	Ave. Iter	104.19	296.34	2162.84	227.16	1	1	
SLA	Ave. Time	4.21	19.69	63.60	26.11	31.33	90.31	
	Ave. Iter	2.38	3.64	6.11	1	1	1	

SLA: Successive linearization algorithm (Mangasarian, 2007)

Thank you for listening!

Some references

■ Jan Harold Alcantara, Jein-Shan Chen \& Matthew K. Tam. Method of alternating projections for the general absolute value equation, to appear in Journal of Fixed Point Theory and Applications, 2022.

- Jan Harold Alcantara \& Ching-pei Lee. Global convergence and acceleration of fixed point iterations of union upper semicontinuous operators: proximal algorithms, alternating and averaged nonconvex projections, and linear complementarity problems, 2022.
- Richard W. Cottle, Jong-Shi Pang \& Richard E. Stone. The Linear Complementarity Problem. Academic Press, New York, NY, 1992.

■ Minh N. Dao \& Matthew K. Tam. Union averaged operators with applications to proximal algorithms for min-convex functions. J. Optim. Theory Appl., 181:61-94, 2019.

- Adrian Lewis, D. Russell Luke \& Jérôme Malick. Local linear convergence for alternating and averaged nonconvex projections. Foundations of Computational Mathematics, 2009.

[^0]: ${ }^{3}$ That is, $\operatorname{det}\left(Q_{\Lambda \Lambda}\right) \neq 0$ for all $\Lambda \subset\{1, \ldots, n\}$
 ${ }^{4} \operatorname{Ker}(T){ }^{\perp}=\operatorname{Ker}\left(\left[\begin{array}{ll}I & Q\end{array}\right]\right)$

[^1]: ${ }^{5}$ That is, $\operatorname{det}\left(Q_{\Lambda \Lambda}\right)>0$ for all $\Lambda \subset\{1, \ldots, n\}$

