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Absolute value equation (AVE)

Ax = c (LS)

This reduces to a system of linear equations when B = 0.

When m = n, (AVE) ⇐⇒ (LCP)2

x ≥ 0, Mx + q ≥ 0, and ⟨x ,Mx + q⟩ = 0 (LCP)

known as the linear complementarity problem.
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2O. L. Mangasarian, R.R. Meyer, Absolute value equations, Linear Algebra and its
Applications, 419, 359–367, 2006.
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Known methods for solving AVEs

Case I. m = n and B = −I
There are plenty of algorithms for

Ax − |x | = c

but they can be roughly classified as:

Newton-based methods. Semismooth Newton, Inexact Newton, and
smoothing Newton approaches.

Picard iterations. When A is invertible, solutions of (AVE)
corresponds to fixed points of T (x) := A−1(|x |+ c).

Matrix splitting method. Splitting strategies for A to reduce cost of
each iteration instead of solving a full linear system.

Successive linearization algorithm. Reformulate (AVE) as a concave
minimization problem, solved by successive linearization.
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Case II (General case). m ̸= n, B ̸= I

Only successive linearization algorithm is known to handle the general
case.

Note: The interest to this case might be purely theoretical only, as
there are no known applications (yet).
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Our approach to solve Ax + B |x | = c

Let y = |x | ∈ IRn.

AVE reduces to finding a pair (x , y) such that{
Ax + By = c

y = |x |

We obtain a nonconvex feasibility problem:

Find (x , y) ∈ S1 ∩ S2

where S1,S2 ⊂ IRn are given by

S1 := {(x , y) ∈ IRn × IRn : Ax + By = c} (affine)

How do we solve a two-set feasibility problem?
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Solution methods for feasibility problems

Classical approaches use projections: Given a nonempty set S , the
projector onto S is given by

PS(z) := {s ∈ S : ∥s − z∥ ≤ ∥t − z∥ ∀t ∈ S}.

When S is convex and closed, PS is single-valued everywhere.

When S is nonconvex, PS could be multivalued.
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Projectors onto convex and nonconvex set

S

•x

•y PS(x) = {y}

S•x

•

•

y1

y2

PS(x) = {y1, y2}
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S2 := {(x , y) ∈ IRn × IRn : y = |x |}

x

y

S2

w
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Examples of solution methods for feasibility problems

1 Method of alternating projections (MAP)

zk+1 ∈ PS1(PS2(z
k)), k = 0, 1, 2, . . .

2 Method of averaged projections (MAveP)

zk+1 ∈ PS1(z
k) + PS2(z

k)

2
, k = 1, 2, . . .

3 Douglas-Rachford method (DR)

zk+1 ∈ zk + RS1(RS2(z
k))

2
, k = 0, 1, 2, . . .

where RS := 2PS − Id .
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MAP, MAveP, DR

Global convergence to S1 ∩ S2 is known when the sets S1 and S2 are
both closed and convex.

Nonconvex case is problematic.
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Our approach

We apply MAP to

Find (x , y) ∈ S1 ∩ S2

with

S1 := {(x , y) ∈ IRn × IRn : Ax + By = c} (affine)
S2 := {(x , y) ∈ IRn × IRn : y = |x |} (nonconvex)

Problems

1 If a generated MAP sequence is convergent, is the limit a solution?

(Focus of this work)

2 Is MAP globally/locally convergent?

3 Do we obtain good numerical results?
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Is the limit (if it exists) always a solution?

S1 = {(x , y) ∈ IR2 : x − y = −2/
√
2}

S2 = {(x , y) ∈ IR2 : y = |x |}.

Let C1 and C2 be 45◦ clockwise rotations of S1 and S2, respectively.

u

v

w∗v = 1

Figure: C1 := blue line
C2 := nonnegative (u, v)-axes
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u

v

v = 1 w∗

Figure: C1 := blue line; C2 := nonnegative (u, v)-axes

Location of initial point Limit of (PC1 ◦ PC2)
k

Gray region Not a solution

Red dashed line Depends on selected element of PC2

Else Solution
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Fixed points

Definition

The set of fixed points of MAP are given by

Fix(PS1 ◦ PS2) = {z ∈ IRn × IRn : z ∈ (PS1 ◦ PS2)(z)}, (1)

Limit points of a MAP sequence belong to Fix(PS1 ◦ PS2).

Clearly, S1 ∩ S2 ⊂ Fix(PS1 ◦ PS2).

If S1 and S2 are convex and closed, S1 ∩ S2 = Fix(PS1 ◦ PS2).

For the feasibility reformulation of the AVE:

Which fixed points belong to S1 ∩ S2?
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Change of Variables

Let R be the orthogonal matrix R = 1√
2

[
In −In
In In

]
and let

w = RTz , where

z = (x , y) (original variables)
w = (u, v) (new variables)

The constraint sets S1 and S2 become

C1 = {w ∈ IRn × IRn : Tw =
√
2c} T := [ A+ B − A+ B]

C2 = {w = (u, v) ∈ IRn × IRn : u ≥ 0, v ≥ 0, and ⟨u, v⟩ = 0}
(complementarity set)

Find z ∈ S1 ∩ S2 ⇐⇒ Find w ∈ C1 ∩ C2

RT Fix(PS1 ◦ PS2) = Fix(PC1 ◦ PC2)
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Case I: Arbitrary m and n

Denote

Ĉ2 = {(u, v) ∈ IRn × IRn : uivi = 0 ∀i ∈ [n]},
Ω = {(u, v) ∈ IRn × IRn : for each i ∈ [n], ui ≥ 0 or vi ≥ 0}.

Theorem (A, Chen & Tam, 2022, JFPTA)

Let T = [ A+ B − A+ B] ∈ IRm×2n. If

Ker(T )⊥ ∩ Ĉ2 = {0}, (C)

then for any c ∈ IRm,

Fix(PC1 ◦ PC2) ∩ Ω = C1 ∩ C2.
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Questions

1 When does condition (C):

Ker(T )⊥ ∩ Ĉ2 = {0}, (C)

hold?

2 Under what assumptions do we get

Fix(PC1 ◦ PC2) ⊂ Ω?
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Case II: m = n

A matrix Q is said to be nondegenerate if all its principal minors are
nonzero3.

Theorem (A, Chen & Tam, 2022, JFPTA)

If Q := (AT + BT)(AT − BT)−1 is nondegenerate4, then

Fix(PC1 ◦ PC2) ∩ Ω = C1 ∩ C2.

Nondegeneracy of Q holds, for instance, when σmin(A) > σmax(B) or
σmax(A) < σmin(B).

3That is, det(QΛΛ) ̸= 0 for all Λ ⊂ {1, . . . , n}
J. H. Alcantara | Academia Sinica | July 25, 2022 18
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Example 1: Importance of nondegeneracy

Let A =

(
1 2
3 4

)
, B = −I and c = (−10,−19)/

√
2.

Then

Q =

(
−1.5 1.5

1 0

)
is degenerate.

Let w̄ = (−0.9231, 4.7026, 9.0872; 0.6154). Then

w̄ ∈ Fix(PC1 ◦ PC2) ∩ Ω and w̄ /∈ C1 ∩ C2.
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Case II: m = n (continued)

A matrix Q is said to be a P-matrix if all of its principal minors are
positive5.

Theorem (A, Chen & Tam, 2022, JFPTA)

If Q := (AT + BT)(AT − BT)−1 is a P-matrix, then

Fix(PC1 ◦ PC2) = C1 ∩ C2. (2)

If σmin(A) > σmax(B), then Q is positive definite. Thus, (2) holds.

5That is, det(QΛΛ) > 0 for all Λ ⊂ {1, . . . , n}
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Local convergence

Theorem (A, Chen & Tam, 2022, JFPTA)

Suppose w∗ ∈ C1 ∩ C2. Then there exists sufficiently small δ > 0 such
that for any w0 with ∥w0 − w∗∥ < δ, any generated MAP sequence
converges to a point in C1 ∩ C2.

Proved in two ways:

Proof 1: By expressing C2 as a finite union of closed convex sets,
results will follow from Dao & Tam (JOTA, 2019).

Proof 2: Using an optimization reformulation of the feasibility
problem.

By-product of Proof 2: Global convergence for homogeneous AVE.
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Linear rates: Arbitrary m and n

Proposition (A, Chen & Tam, 2022, JFPTA)

If condition (C) holds:

Ker(T )⊥ ∩ Ĉ2 = {0}, (C)

and w∗ ∈ C1 ∩ C2 such that (u∗i , v
∗
i ) ̸= (0, 0) (∀i), then any sequence

generated by MAP with initial point sufficiently close to w∗ converges
linearly to a point in C1 ∩ C2.

This is a consequence of Lewis, Luke and Malick’s linear convergence
results for super-regular sets with linearly regular intersection.
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Linear rates: m = n

Theorem (A, Chen & Tam, 2022, JFPTA)

If Q is nondegenerate and w∗ ∈ C1 ∩C2 such that (u∗i , v
∗
i ) ̸= (0, 0) (∀i),

then any sequence generated by MAP with initial point sufficiently close
to w∗ converges linearly to w∗.
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Global convergence

We have global convergence for

1 homogeneous AVE

2 Relaxed version of MAP:

wk+1 ∈ (1− γ)PC2(w
k) + γ(PC1 ◦ PC2)(w

k), γ ∈ (0, 1)

No global convergence result for full MAP6 .

Conjecture: Nondegeneracy is necessary for global convergence.
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wk+1 ∈ (1− γ)PC2(w
k) + γ(PC1 ◦ PC2)(w

k), γ ∈ (0, 1)

No global convergence result for full MAP6 .

Conjecture: Nondegeneracy is necessary for global convergence.

6Not until our most recent work:
J.H. Alcantara and C.-p. Lee, Global convergence and acceleration of fixed point

iterations of union upper semicontinuous operators: proximal algorithms, alternating and
averaged nonconvex projections, and linear complementarity problems,
arXiv:2202.10052, 2022.
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Example 1: m = n

Set A = A′/(tσmin(A
′)) with a′ij ∼ U(−10, 10) and t ∼ U(0, 1).

Set x∗ ∈ IRn such that x∗i = r · 10αs with α ∈ {0, 1, 2, 3},
r ∼ U(−1, 1) and s ∼ U(0, 1).

c = Ax∗ + B|x∗| with B = −I .

n = 5000
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Table: Results for Example 1

Method
α

0 1 2 3

MAP

Success rate 1 0.99 0.87 0.62
Ave. Time 2.58 3.03 3.13 10.42
Ave. Iter 40.85 52.51 55.44 250.39

GNM

Success rate 0.76 0.55 0 0
Ave. Time 2.23 2.29 − −
Ave. Iter 3.93 4.00 − −

PIM

Success rate 0.75 0.54 0.01 0
Ave. Time 0.57 0.59 0.84 −
Ave. Iter 4.99 5.65 22.00 −

GNM: Generalized Newton Method (Mangasarian, 2008)

PIM: Picard Iteration Method (Rohn, Hooshyarbaksh, and Farhadsefat, 2014)
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Example 2: m ̸= n

Sample entries of A,B ∈ IRm×n and x∗ ∈ IRn from the standard
normal distribution.

Set c = Ax∗ + B|x∗|

n = 500

m = rn with r ∈ {0.25, 0.5, 0.75, 1.5, 2.0, 3.0}.
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Table: Results for Example 2

Method
r

0.25 0.5 0.75 1.5 2 3

MAP
Ave. Time 0.01 0.03 0.26 0.12 0.02 0.19
Ave. Iter 104.19 296.34 2162.84 227.16 1 1

SLA
Ave. Time 4.21 19.69 63.60 26.11 31.33 90.31
Ave. Iter 2.38 3.64 6.11 1 1 1

SLA: Successive linearization algorithm (Mangasarian, 2007)
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Thank you for listening!
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Adrian Lewis, D. Russell Luke & Jérôme Malick. Local linear convergence
for alternating and averaged nonconvex projections. Foundations of
Computational Mathematics, 2009.

J. H. Alcantara | Academia Sinica | July 25, 2022 30


	Absolute value equation and its reformulation
	Fixed point characterization
	Convergence results
	Numerical experiments
	Appendix

