Proximal algorithms for a class of nonconvex nonsmooth minimization problems involving piecewise smooth and min-weakly-convex functions

Jan Harold Alcantara
Institute of Statistical Sciences, Academia Sinica

A joint work with Ching-pei Lee

January 18, 2022

Outline

- Introduction
- Min-convex optimization
- Acceleration Methods
- Application to LCP
- Numerical Results

Problem formulation

We consider the problem

$$\min_{w\in\mathbb{E}} f(w) + g(w) - h(w)$$

where $f, g, h : \mathbb{E} \to (-\infty, +\infty]$ and \mathbb{E} is a Euclidean space.

Problem formulation

We consider the problem

$$\min_{w \in \mathbb{E}} f(w) + g(w) - h(w)$$

where $f, g, h : \mathbb{E} \to (-\infty, +\infty]$ and \mathbb{E} is a Euclidean space.

What is the "usual" setting¹ considered?

- f is convex and has L-Lipschitz continuous gradient.
- \blacksquare g is proper closed and <u>convex</u>.
- h is continuous convex.

¹Wen, B. Chen, X. and Pong, T.K. A proximal difference-of-convex algorithm with extrapolation. *Computational Optimization and Applications*, 69:297–324, 2018. ₹ ★ ○ ○ ○

Proximal difference-of-convex algorithm (pDCA)¹

pDCA algorithm

$$w^{k+1} = \operatorname{prox}_{\lambda g} \left(w^k - \frac{1}{L} \nabla f(w^k) + \frac{1}{L} \xi^k \right)$$

where $\xi^k \in \partial h(w^k)$ and

$$\operatorname{prox}_{\lambda g}(w) \coloneqq \operatorname*{arg\,min}_{z \in \mathbb{E}} \left\{ g(z) + \frac{1}{2\lambda} \|z - w\|^2 \right\}.$$

Proximal difference-of-convex algorithm (pDCA)¹

pDCA algorithm

$$w^{k+1} = \operatorname{prox}_{\lambda g} \left(w^k - \frac{1}{L} \nabla f(w^k) + \frac{1}{L} \xi^k \right)$$

where $\xi^k \in \partial h(w^k)$ and

$$\operatorname{prox}_{\lambda g}(w) \coloneqq \operatorname*{arg\,min}_{z \in \mathbb{E}} \left\{ g(z) + \frac{1}{2\lambda} \|z - w\|^2
ight\}.$$

Questions

Can we extend this to possibly <u>nondifferentiable</u> f? How about to nonconvex functions f, g and h?

Outline

- Introduction
- Min-convex optimization
- Acceleration Methods
- Application to LCP
- Numerical Results

ρ -convex functions

Definition (ρ -convex function)

A function F is said to be ρ -convex if $F(w) - \frac{\rho}{2} ||w||^2$ is a convex function.

F is said to be

- weakly convex if ρ < 0
- lacksquare convex if $ho \geq 0$
- **strongly convex** if $\rho > 0$.

min- ρ -convex functions

Definition (min- ρ -convex function)

We say that $g: \mathbb{E} \to (-\infty, +\infty]$ is a min- ρ -convex function if there exist an index set J with $|J| < \infty$, and ρ -convex, proper closed functions $g_j: \mathbb{E} \to \mathbb{R} \cup \{+\infty\}$, $j \in J$, such that

$$g(w) = \min_{j \in J} g_j(w), \quad \forall w \in \mathbb{E}.$$

min- ρ -convex functions

Definition (min- ρ -convex function)

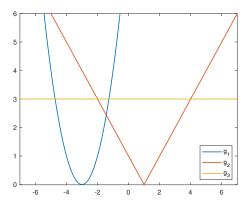
We say that $g: \mathbb{E} \to (-\infty, +\infty]$ is a min- ρ -convex function if there exist an index set J with $|J| < \infty$, and ρ -convex, proper closed functions $g_j: \mathbb{E} \to \mathbb{R} \cup \{+\infty\}$, $j \in J$, such that

$$g(w) = \min_{j \in J} g_j(w), \quad \forall w \in \mathbb{E}.$$

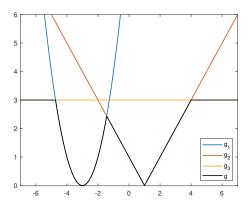
We call g

- $lue{}$ min-weakly convex if ho < 0
- min-convex if $\rho \ge 0$
- min-strongly convex if $\rho > 0$.

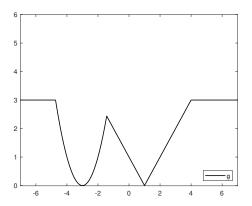
A min-convex function



A min-convex function



A min-convex function



$$\min_{w\in\mathbb{E}}f(w)+g(w)-h(w)$$

3 g is a min- ρ -convex function.

$$\min_{w\in\mathbb{E}}f(w)+g(w)-h(w)$$

1 The functions f, g and h are expressible as

$$f = \min_{i \in I} f_i, \quad g = \min_{j \in J} g_j, \quad \text{and} \quad h = \max_{m \in M} h_m,$$

where I, J and M are **finite** index sets.

3 g is a min- ρ -convex function.

$$\min_{w\in\mathbb{E}}f(w)+g(w)-h(w)$$

1 The functions f, g and h are expressible as

$$f = \min_{i \in I} f_i, \quad g = \min_{j \in J} g_j, \quad \text{and} \quad h = \max_{m \in M} h_m,$$

where I, J and M are **finite** index sets.

- **2** $\forall i \in I$, f_i has L_i -Lipschitz continuous gradient on \mathbb{E} .
- **3** g is a min- ρ -convex function.

$$\min_{w\in\mathbb{E}}f(w)+g(w)-h(w)$$

1 The functions f, g and h are expressible as

$$f = \min_{i \in I} f_i, \quad g = \min_{j \in J} g_j, \quad \text{and} \quad h = \max_{m \in M} h_m,$$

where I, J and M are **finite** index sets.

- **2** $\forall i \in I$, f_i has L_i -Lipschitz continuous gradient on \mathbb{E} .
- 3 g is a min- ρ -convex function.
- $\forall m \in M, h_m \text{ is a } C^1 \text{ convex function on } \mathbb{E}.$

$$\min_{w\in\mathbb{E}}f(w)+g(w)-h(w)$$

1 The functions f, g and h are expressible as

$$f = \min_{i \in I} f_i, \quad g = \min_{j \in J} g_j, \quad \text{and} \quad h = \max_{m \in M} h_m,$$

where I, J and M are **finite** index sets.

- **2** $\forall i \in I$, f_i has L_i -Lipschitz continuous gradient on \mathbb{E} .
- 3 g is a min- ρ -convex function.
- **4** \forall *m* ∈ *M*, h_m is a C^1 convex function on \mathbb{E} .
- **5** \forall (*i*, *j*, *m*) ∈ *I* × *J* × *M*, $f_i + g_j h_m$ is coercive over \mathbb{E} .

 $\mathbf{1}$ f is not necessarily smooth, but is piecewise smooth.

- **1** *f* is not necessarily smooth, but is piecewise smooth.
- $\mathbf{2}$ g is not necessarily convex.

- \blacksquare f is not necessarily smooth, but is piecewise smooth.
- 2 g is not necessarily convex. $\operatorname{prox}_{\lambda g}$ is single-valued for any $w \in \mathbb{E}$ and $\lambda \in (0, \overline{\lambda})$ where

$$\bar{\lambda} = \begin{cases} -1/\rho & \text{if } \rho < 0, \\ +\infty & \text{if } \rho \ge 0. \end{cases}$$

- \blacksquare f is not necessarily smooth, but is piecewise smooth.
- 2 g is not necessarily convex. $\operatorname{prox}_{\lambda g}$ is single-valued for any $w \in \mathbb{E}$ and $\lambda \in (0, \overline{\lambda})$ where

$$\bar{\lambda} = \begin{cases} -1/\rho & \text{if } \rho < 0, \\ +\infty & \text{if } \rho \ge 0. \end{cases}$$

 $\mathbf{3}$ h is a convex piecewise smooth function.

Some notations ...

Some notations . . .

1 Given $S \subseteq \mathbb{E}$, $\operatorname{prox}_{\lambda g}(S) := \bigcup_{w \in S} \operatorname{prox}_{\lambda g}(w)$.

Some notations . . .

- **1** Given $S \subseteq \mathbb{E}$, $\operatorname{prox}_{\lambda g}(S) := \bigcup_{w \in S} \operatorname{prox}_{\lambda g}(w)$.
- **2** We denote $f': \mathbb{E} \rightrightarrows \mathbb{E}$ is defined by

$$f'(w) := \{ \nabla f_i(w) : i \in I \text{ such that } f(w) = f_i(w) \},$$

Some notations . . .

- **1** Given $S \subseteq \mathbb{E}$, $\operatorname{prox}_{\lambda g}(S) := \bigcup_{w \in S} \operatorname{prox}_{\lambda g}(w)$.
- **2** We denote $f': \mathbb{E} \rightrightarrows \mathbb{E}$ is defined by

$$f'(w) \coloneqq \{\nabla f_i(w) : i \in I \text{ such that } f(w) = f_i(w)\},$$

and similarly, $h':\mathbb{E}\rightrightarrows\mathbb{E}$ is given by

$$h'(w) := \{ \nabla h_m(w) : m \in M \text{ such that } h(w) = h_m(w) \}.$$

Proximal difference-of-min-convex algorithm (PDMC)

PDMC algorithm (A. & Lee, 2022)

$$w^{k+1} \in \operatorname{prox}_{\lambda g} \left(w^k - \lambda f'(w^k) + \lambda h'(w^k) \right),$$
 (PDMC)

where $\lambda \in (0, \bar{\lambda}) \cap (0, 1/L]$, and $L := \max_{i \in I} L_i$

Proximal difference-of-min-convex algorithm (PDMC)

PDMC algorithm (A. & Lee, 2022)

$$w^{k+1} \in \operatorname{prox}_{\lambda g} \left(w^k - \lambda f'(w^k) + \lambda h'(w^k) \right),$$
 (PDMC)

where $\lambda \in (0, \bar{\lambda}) \cap (0, 1/L]$, and $L := \max_{i \in I} L_i$

What can we say about the convergence of this algorithm?

Global convergence to critical points

Theorem (A. & Lee, 2022)

Let $\{w^k\}$ be any sequence generated by (PDMC) with $\lambda \in (0, \min{\{\bar{\lambda}, 1/L\}})$.

If Assumption A holds, then $\{w^k\}$ is bounded and its accumulation points are critical points² of f + g - h.

²We say that w is a critical point if $0 \in \partial f(w) + \partial g(w) \rightarrow \partial h(w)$.

Special cases

Define
$$T^{\lambda}: \mathbb{E} \rightrightarrows \mathbb{E}$$
 by

$$T^{\lambda}(w) := \operatorname{prox}_{\lambda g} (w - \lambda f'(w) + \lambda h'(w))$$

Special cases

Define $T^{\lambda}: \mathbb{E} \rightrightarrows \mathbb{E}$ by

$$T^{\lambda}(w) := \operatorname{prox}_{\lambda g} (w - \lambda f'(w) + \lambda h'(w))$$

Full convergence

If w^* is an accumulation point and T^{λ} is single-valued at w^* , then $w^k \to w^*$ under any of the following conditions:

- **1** each $Id \lambda \nabla f_i$ and ∇h_m are nonexpansive and g_j is ρ -convex with $\rho \geq 1$, or
- **2** each $Id \lambda \nabla f_i$ is nonexpansive, $h \equiv 0$ and g_j is ρ -convex with $\rho \geq 0$,

with local linear rate if $\rho > 1$ and $\rho > 0$, respectively.

Local linear rate also holds when

3 $h \equiv 0$, $g_j = \delta_{R_j}$ and each $Id - \lambda \nabla f_i$ is a contraction over R_j , where each R_j is a convex set⁴.

⁴In this case, g_i is a ρ -convex function with $\rho = 0$.

Local linear rate also holds when

3 $h \equiv 0$, $g_j = \delta_{R_j}$ and each $Id - \lambda \nabla f_i$ is a contraction over R_j , where each R_j is a convex set⁴.

Remark

- For case 2, PDMC reduces to a generalized forward-backward algorithm.
- 2 For case 3, PDMC simplifies to a generalized projected subgradient algorithm.

⁴In this case, g_i is a ρ -convex function with $\rho = 0$.

Outline

- Introduction
- Min-convex optimization
- Acceleration Methods
- Application to LCP
- Numerical Results

Acceleration method 1: Extrapolation

We do extrapolation if consecutive iterates activate the same piece of f+g-h.

$$\chi_k \coloneqq \begin{cases} 1 & \text{if } w^k \& w^{k-1} \text{ activate the same piece and } k \ge 1, \\ 0 & \text{otherwise,} \end{cases}$$
 (1)

Algorithm 1: Accelerated proximal difference-of-min-convex algorithm

Let $\phi = f + g - h$. Choose $\sigma > 0$, $\lambda \in (0, 1/L] \cap (0, \overline{\lambda})$, and $w^0 \in \mathbb{E}$. Set $w^{-1} = w^0$ and k = 0.

Step 1. Set $z^k = w^k + t_k \chi_k p^k$, where $p^k = w^k - w^{k-1}$, $t_k \ge 0$ satisfies

$$\phi(z^k) \le \phi(w^k) - \frac{\sigma}{2} t_k^2 \chi_k^2 ||p^k||^2,$$
 (2)

and χ_k is given by (1).

Step 2. Set $w^{k+1} \in T^{\lambda}(z^k)$, k = k+1, and go back to Step 1.

Acceleration method 2: Component identification

Algorithm 2: Proximal difference-of-min-convex algorithm with component identification

Choose $w^0 \in \mathbb{E}$, $N \in \mathbb{N}$. Set Unchanged = 0, k = 0.

- Step 1. Set Unchanged = χ_k (Unchanged + 1)
- Step 2. Compute w^{k+1} according to the following rule:
 - 2.1 If Unchanged < N: set $w^{k+1} \in T^{\lambda}(w^k)$. Terminate if $w^{k+1} \in Fix(T^{\lambda})$; otherwise, set k = k+1 and go back to Step 1.
 - 2.2 If Unchanged = N: pick (i, j, m) activated by w^k , and solve

$$w^{k+1} \in \operatorname*{arg\,min}_{z \in \mathbb{E}} f_i(z) + g_j(z) - h_m(z). \tag{3}$$

Terminate if $w^{k+1} \in Fix(T^{\lambda})$; otherwise, set Unchanged = -1, $w^{k+1} = w^k$, k = k+1, and go back to Step 1.

Outline

- Introduction
- Min-convex optimization
- Acceleration Methods
- Application to LCP
- Numerical Results

Application: Linear complementarity problem

■ Consider the linear complementarity problem (LCP): Find $x \in \mathbb{R}^n$ such that

$$x \ge 0$$
, $Mx - d \ge 0$, and $\langle x, Mx - d \rangle = 0$, (LCP)

where $M \in \mathbb{R}^{n \times n}$ and $d \in \mathbb{R}^n$.

Application: Linear complementarity problem

■ Consider the linear complementarity problem (LCP): Find $x \in \mathbb{R}^n$ such that

$$x \ge 0$$
, $Mx - d \ge 0$, and $\langle x, Mx - d \rangle = 0$, (LCP)

where $M \in \mathbb{R}^{n \times n}$ and $d \in \mathbb{R}^n$.

Let y := Mx - d. Then (LCP) is equivalent to

$$Mx - y = d, (S_1)$$

$$x \ge 0, \quad y \ge 0, \quad \langle x, y \rangle = 0.$$
 (S₂)

Application: Linear complementarity problem

■ Consider the linear complementarity problem (LCP): Find $x \in \mathbb{R}^n$ such that

$$x \ge 0$$
, $Mx - d \ge 0$, and $\langle x, Mx - d \rangle = 0$, (LCP)

where $M \in \mathbb{R}^{n \times n}$ and $d \in \mathbb{R}^n$.

Let y := Mx - d. Then (LCP) is equivalent to

$$Mx - y = d, (S_1)$$

$$x \ge 0, \quad y \ge 0, \quad \langle x, y \rangle = 0.$$
 (S₂)

We denote $\mathbf{w} := (x, y)$.

Feasibility reformulation of LCP

Find
$$w \in S_1 \cap S_2$$

where

$$\begin{split} S_1 &= \{ w \in {\rm I\!R}^{2n} : Tw = d \} \quad \text{where } T := [M \ -I_n] \\ S_2 &= \{ w \in {\rm I\!R}^{2n} : w_j \geq 0, \ w_{n+j} \geq 0, \text{and } w_j w_{n+j} = 0 \ \forall j \in [n] \}. \end{split}$$

Feasibility reformulation of LCP

Find
$$w \in S_1 \cap S_2$$

where

$$\begin{split} S_1 &= \{ w \in {\rm I\!R}^{2n} : Tw = d \} \quad \text{where } T := [M \ -I_n] \\ S_2 &= \{ w \in {\rm I\!R}^{2n} : w_j \geq 0, \ w_{n+j} \geq 0, \text{and } w_j w_{n+j} = 0 \ \forall j \in [n] \}. \end{split}$$

- **1** S_1 is an affine set, and therefore convex.
- 2 S_2 is nonconvex, but can be expressed as a finite union of closed convex sets (called a union convex set⁵)

⁵Dao, M.N. and Tam, M.K.. Union averaged operators with applications to proximal algorithms for min-convex functions. *J. Optim. Theory Appl.*, 181:61–94, 2019.

Example

Let n = 1 so that

$$S_2 = \{(w_1, w_2) : w_1, w_2 \ge 0 \text{ and } w_1 w_2 = 0\}.$$

Example

Let n = 1 so that

$$S_2 = \{(w_1, w_2) : w_1, w_2 \ge 0 \text{ and } w_1 w_2 = 0\}.$$

Then $S_1 = R_1 \cup R_2$ where

$$R_1 = \{(a,0) : a \ge 0\}$$

$$R_2 = \{(0,b) : b \ge 0\}$$

The following are equivalent:

- $v \in S_1 \cap S_2$
- $\frac{1}{2}\operatorname{dist}(w,S_1)^2 + \frac{1}{2}\operatorname{dist}(w,S_2)^2 = 0$
- $\frac{1}{2} \operatorname{dist}(w, S_1)^2 + \delta_{S_2}(w) = 0.$

The following are equivalent:

- $w \in S_1 \cap S_2$
- $\frac{1}{2} \operatorname{dist}(w, S_1)^2 + \frac{1}{2} \operatorname{dist}(w, S_2)^2 = 0$
- $\frac{1}{2} \operatorname{dist}(w, S_1)^2 + \delta_{S_2}(w) = 0.$

Merit functions

$$f + g - h$$

- $\frac{1}{2}\operatorname{dist}(w, S_1)^2 + \frac{1}{2}\|w\|^2 \left(\frac{1}{2}\|w\|^2 \frac{1}{2}\operatorname{dist}(w, S_2)^2\right)$
- 2 $\frac{1}{2}$ dist $(w, S_1)^2 + \frac{1}{2}$ dist $(w, S_2)^2 0$
- 3 $\frac{1}{2}$ dist $(w, S_1)^2 + \delta_{S_2}(w) 0$

The following are equivalent:

- $v \in S_1 \cap S_2$
- $\frac{1}{2} \operatorname{dist}(w, S_1)^2 + \frac{1}{2} \operatorname{dist}(w, S_2)^2 = 0$
- $\frac{1}{2} \operatorname{dist}(w, S_1)^2 + \delta_{S_2}(w) = 0.$

Merit

Do these functions f, g and h satisfy Assumption A?

2
$$\frac{1}{2}$$
 dist $(w, S_1)^2 + \frac{1}{2}$ dist $(w, S_2)^2 - 0$

$$\frac{1}{2} \operatorname{dist}(w, S_1)^2 + \delta_{S_2}(w) - 0$$

Recall...

$$\min_{w\in\mathbb{E}}f(w)+g(w)-h(w)$$

Assumptions A1-A4

- **2** $\forall i \in I$, f_i has L_i -Lipschitz continuous gradient on \mathbb{E} .
- $\forall j \in J$, g_j is a ρ -convex function.

$$\underbrace{0.5\operatorname{dist}(w,S_1)^2}_{f(w)} + \underbrace{0.5\operatorname{dist}(w,S_2)^2}_{g(w)} - \underbrace{0}_{h(w)}$$

$$\underbrace{0.5 \operatorname{dist}(w, S_1)^2}_{f(w)} + \underbrace{0.5 \operatorname{dist}(w, S_2)^2}_{g(w)} - \underbrace{0}_{h(w)}$$

1 Clearly, f and h satisfy Assumption A2 and A4.

$$\underbrace{0.5 \operatorname{dist}(w, S_1)^2}_{f(w)} + \underbrace{0.5 \operatorname{dist}(w, S_2)^2}_{g(w)} - \underbrace{0}_{h(w)}$$

- 1 Clearly, f and h satisfy Assumption A2 and A4.
- 2 Since S_2 is a union convex set, then

$$S_2 = \bigcup_{j \in J} R_j.$$

$$\underbrace{0.5 \operatorname{dist}(w, S_1)^2}_{f(w)} + \underbrace{0.5 \operatorname{dist}(w, S_2)^2}_{g(w)} - \underbrace{0}_{h(w)}$$

- 1 Clearly, f and h satisfy Assumption A2 and A4.
- 2 Since S_2 is a union convex set, then

$$S_2 = \bigcup_{j \in J} R_j.$$

Thus,

$$g(w) = \frac{1}{2}\operatorname{dist}(w, S_2)^2 = \min_{j \in J} \frac{1}{2}\operatorname{dist}(w, R_j)^2 =: \min_{j \in J} g_j(w).$$

where each g_i is convex. A3 is satisfied!

(Complete) Assumption A

- If $e = \min_{i \in I} f_i$, $g = \min_{j \in J} g_j$, and $h = \max_{m \in M} h_m$, where $|I|, |J|, |M| < \infty$ where I, J and M are finite index sets.
- **2** $\forall i \in I$, f_i has L_i -Lipschitz continuous gradient on \mathbb{E} .
- $\forall j \in J$, g_i is a ρ -convex function.
- **5** For all (i, j, m) ∈ $I \times J \times M$, the function $f_i + g_j h_m$ is coercive over \mathbb{E} .

(Complete) Assumption A

- If $= \min_{i \in I} f_i$, $g = \min_{j \in J} g_j$, and $h = \max_{m \in M} h_m$, where $|I|, |J|, |M| < \infty$ where I, J and M are finite index sets.
- **2** $\forall i \in I$, f_i has L_i -Lipschitz continuous gradient on \mathbb{E} .
- **3** \forall *j* ∈ *J*, g_j is a ρ -convex function.
- **5** For all (i, j, m) ∈ $I \times J \times M$, the function $f_i + g_j h_m$ is coercive over \mathbb{E} .

Remark

For the LCP, Assumption A5 holds when M is a P-matrix (A. & Lee, 2022).

Outline

- Introduction
- Min-convex optimization
- Acceleration Methods
- Application to LCP
- Numerical Results

Merit Function 1

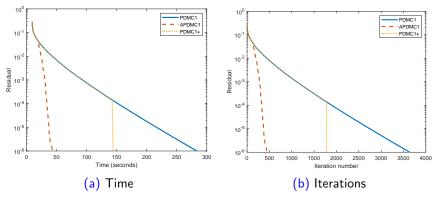


Figure: Non-accelerated and accelerated PDMC for Merit Function 1 for solving a standard LCP.⁷

⁷Kanzow, C. Some noninterior continuation methods for linear complementarity problems. *SIAM Journal on Matrix Analysis and Applications*, 17(4):851–868, 1996.

Merit Function 2

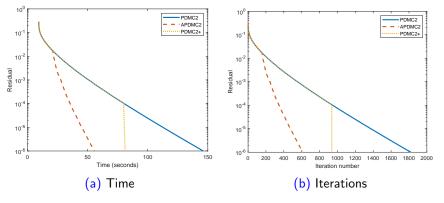


Figure: Non-accelerated and accelerated PDMC for Merit Function 2 for solving a standard LCP.⁷

⁷Kanzow, C. Some noninterior continuation methods for linear complementarity problems. *SIAM Journal on Matrix Analysis and Applications*, 17(4):851–868, 1996.

Merit Function 3

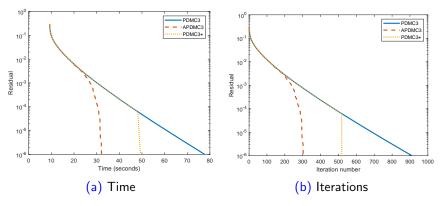


Figure: Non-accelerated and accelerated PDMC for Merit Function 3 for solving a standard LCP 7

⁷Kanzow, C. Some noninterior continuation methods for linear complementarity problems. *SIAM Journal on Matrix Analysis and Applications*, 17(4):851–868, 1996.

Thank you for listening!

Some references

- Jan Harold Alcantara & Ching-pei Lee. Global convergence and acceleration of fixed point iterations of union upper semicontinuous operators: proximal algorithms, alternating and averaged nonconvex projections, and linear complementarity problems, 2022.
- Richard W. Cottle, Jong-Shi Pang, and Richard E. Stone. The Linear Complementarity Prob- lem. Academic Press, New York, NY, 1992.
- Minh N. Dao and Matthew K. Tam. Union averaged operators with applications to proximal algorithms for min-convex functions. *J. Optim. Theory Appl.*, 181:61–94, 2019.
- Christian Kanzow. Some noninterior continuation methods for linear complementarity problems. SIAM Journal on Matrix Analysis and Applications, 17(4):851–868, 1996.
- R. Tyrrell Rockafellar and Roger J-B Wets. Variational Analysis, volume 317 of Grundlehren der MathematischenWissenschaften. Springer, Berlin, 1998.
- Bo Wen, Xiaojun Chen, and Ting Kei Pong. A proximal difference-of-convex algorithm with extrapolation. *Computational Optimization and Applications*, 69:297–324, 2018.

Critical points

For any function F, its subdifferential² at w is

Definition³

We say that w is a critical point of f + g - h if

$$0 \in \partial f(w) + \partial g(w) - \partial h(w).$$

²Rockafellar, R.T. and Wets, R.J. *Variational Analysis*, volume 317 of Grundlehren der Mathematischen Wissenschaften. Springer, Berlin, 1998.

³Coincides with the definition of critical point of Wen et□ al.·in the ≡ "usual" setting • • •

Comparison with extragradient algorithm

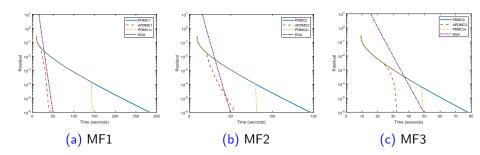


Figure: Comparison of EGA and the proposed non-accelerated and accelerated proximal algorithms for solving the given LCP.